Reconstruction of Ancestral Genomic Sequences Using Likelihood
نویسندگان
چکیده
A challenging task in computational biology is the reconstruction of genomic sequences of extinct ancestors, given the phylogenetic tree and the sequences at the leafs. This task is best solved by calculating the most likely estimate of the ancestral sequences, along with the most likely edge lengths. We deal with this problem and also the variant in which the phylogenetic tree in addition to the ancestral sequences need to be estimated. The latter problem is known to be NP-hard, while the computational complexity of the former is unknown. Currently, all algorithms for solving these problems are heuristics without performance guarantees. The biological importance of these problems calls for developing better algorithms with guarantees of finding either optimal or approximate solutions. We develop approximation, fix parameter tractable (FPT), and fast heuristic algorithms for two variants of the problem; when the phylogenetic tree is known and when it is unknown. The approximation algorithm guarantees a solution with a log-likelihood ratio of 2 relative to the optimal solution. The FPT has a running time which is polynomial in the length of the sequences and exponential in the number of taxa. This makes it useful for calculating the optimal solution for small trees. Moreover, we combine the approximation algorithm and the FPT into an algorithm with arbitrary good approximation guarantee (PTAS). We tested our algorithms on both synthetic and biological data. In particular, we used the FPT for computing the most likely ancestral mitochondrial genomes of hominidae (the great apes), thereby answering an interesting biological question. Moreover, we show how the approximation algorithms find good solutions for reconstructing the ancestral genomes for a set of lentiviruses (relatives of HIV). Supplementary material of this work is available at www.nada.kth.se/~isaac/publications/aml/aml.html.
منابع مشابه
Maximum likelihood reconstruction of ancestral amino-acid sequences
Maximum-likelihood methods are used extensively in phylogenetic studies [3]. In particular, aminoacid sequences of ancestral species have been inferred using these methods [7]. Such ancestral reconstruction tasks aim at identifying either the most likely sequence in a specific ancestor species (marginal reconstruction), or the most likely set of ancestral states corresponding to all the ancestr...
متن کاملAssessing the Accuracy of Ancestral Protein Reconstruction Methods
The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess t...
متن کاملA Practical Algorithm for Estimation of the Maximum Likelihood Ancestral Reconstruction Error
The ancestral sequence reconstruction problem asks to predict the DNA or protein sequence of an ancestral species, given the sequences of extant species. Such reconstructions are fundamental to comparative genomics, as they provide information about extant genomes and the process of evolution that gave rise to them. Arguably the best method for ancestral reconstruction is maximum likelihood est...
متن کاملRobustness of Ancestral Sequence Reconstruction to Phylogenetic Uncertainty
Ancestral sequence reconstruction (ASR) is widely used to formulate and test hypotheses about the sequences, functions, and structures of ancient genes. Ancestral sequences are usually inferred from an alignment of extant sequences using a maximum likelihood (ML) phylogenetic algorithm, which calculates the most likely ancestral sequence assuming a probabilistic model of sequence evolution and ...
متن کاملAncestral Nucleotide and Amino Acid Sequences
A statistical method was developed for reconstructing the nucleotide or amino acid sequences of extinct ancestors, given the phylogeny and sequences of the extant species. A model of nucleotide or amino acid substitution was employed to analyze data of the present-day sequences, and maximum likelihood estimates of parameters such as branch lengths were used to compare the posterior probabilitie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2007